Abstract

Regional pulmonary blood flow was investigated with radiolabeled microspheres in four supine lambs during the transition from conventional mechanical ventilation (CMV) to partial liquid ventilation (PLV) and with incremental dosing of perfluorocarbon liquid to a cumulative dose of 30 ml/kg. Four lambs supported with CMV served as controls. Formalin-fixed, air-dried lungs were sectioned according to a grid; activity was quantitated with a multichannel scintillation counter, corrected for weight, and normalized to mean flow. During CMV, flow in apical and hilar regions favored dependent lung (P < 0.001), with no gradient across transverse planes from apex to diaphragm. During PLV the gradient within transverse planes found during CMV reversed, most notably in the hilar region, favoring nondependent lung (P = 0.03). Also during PLV, flow was profoundly reduced near the diaphragm (P < 0.001), and across transverse planes from apex to diaphragm a dose-augmented flow gradient developed favoring apical lung (P < 0.01). We conclude that regional flow patterns during PLV partially reverse those noted during CMV and vary dramatically within the lung from apex to diaphragm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.