Abstract

Pulmonary arterial compliance, the dynamic component of pulmonary vasculature, remains inadequately studied in patients with left to right shunts. We sought to study the pulmonary arterial compliance in patients with left to right shunt lesions and its utility in clinical decision-making. In this single-centre retrospective study, we reviewed cardiac catheterisation data of consecutive patients of left to right shunt lesions catheterised over one year. In addition to the various other parameters, pulmonary arterial compliance was calculated, as indexed pulmonary flow (Qpi) / (Heart rate × pulse pressure in the pulmonary artery). RC time was also calculated, as the product of pulmonary arterial compliance and pulmonary vascular resistance index. Patients were divided into "operable," "borderline," and "inoperable" based on the decision of the treating team, and the pulmonary arterial compliance values were evaluated in these groups to study if it can be utilised to refine the operability decision. 298 patients (Median age 16 years, 56% <18 years) with various acyanotic shunt lesions were included. Overall, the pulmonary arterial compliance varied with Qpi, pulmonary artery mean pressure, and pulmonary vascular resistance index, but did not vary with age, type of lesion, or transpulmonary gradients. The median pulmonary arterial compliance in patients with normal pulmonary artery pressure (Mean pulmonary artery pressure less than 20 mmHg) was 4.1 ml/mmHg/m2 (IQR 3.2). The median pulmonary arterial compliance for operable patients was 2.67 ml/mmHg/m2 (IQR 2.2). Median pulmonary arterial compliance was significantly lower in both inoperable (0.52 ml/mmHg/m2, IQR 0.34) and borderline (0.80 ml/mmHg/m2, IQR 0.36) groups when compared to operable patients (p < 0.001). A pulmonary arterial compliance value lower than 1.18 ml/mmHg/m2 identified inoperable patients with high sensitivity and specificity (95%, AUC 0.99). However, in borderline cases, assessment by this value did not agree with empirical clinical assessment.The median RC time for the entire study population was 0.47 S (IQR 0.30). RC time in operable patients was significantly lower than that in the inoperable patients (Median 0.40 IQR 0.23 in operable, 0.73 0.25 in inoperable patients (p < 0.001). Addition of pulmonary arterial compliance to the routine haemodynamic assessment of patients with shunt lesions may improve our understanding of the pulmonary circulation and may have clinical utility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call