Abstract

When injected intravenously, cellulose micro-particles become lodged in pulmonary arterioles. The current study investigated the systemic and pulmonary inflammatory responses triggered by cellulose micro-particles at 3, 24, and 48 h postinjection in 6-wk-old broilers. Proportions and concentrations of circulating white blood cells were assessed in saline-injected (control group) and cellulose-injected (particle group) birds. Hematoxylin-eosin (HE)-stained cross-sections of the lungs were used to count the number of granuloma/lymphocyte aggregates, which is indicative of the severity of the inflammatory response to the trapped particles. The cellular components of the aggregates were identified by immunohistochemical staining of frozen cross sections of the lungs. Results showed that cellulose micro-particles trapped in the pulmonary vasculature initiated a dynamic, localized inflammatory response within the surrounding lung parenchyma. Monocytes and basophilic granulocytes closely surrounded the particles. CD4, CD8, TCR1, TCR2, and TCR3 subsets of T cells and B cells were present in the outer rim of the granuloma/lymphocyte aggregates. Circulating total white blood cell (WBC, leukocytes) concentrations were similar in both groups at all times postinjection, whereas at 48 h post-injection the percentages of eosinophils and basophils among circulating WBC were higher in the particle group than in the control group (P < or = 0.05). The circulating monocyte concentration also increased within 24 h postinjection (P < or = 0.05). These observations demonstrate that cellulose micro-particles trapped in the pulmonary vasculature initiated acute focal inflammatory responses in the lungs and that the proportions of WBCs in the blood are modulated within 48 h postinjection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call