Abstract

Antigen-specific immunotherapy has been used to hyposensitize patients to allergens and offers an enticing approach for attenuating autoimmune diseases. Applying antigen-specific immunotherapy to mucosal surfaces such as the lungs may engage unique immune response pathways to improve efficacy. Pulmonary delivery of soluble antigen arrays (SAgAs) was explored in mice with experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis model. SAgAs were designed to impede immune response to autoantigen epitopes and are composed of a hyaluronan backbone with peptides PLP139-151 (proteolipid protein) and LABL, a disease-causing proteolipid peptide epitope and an intracellular cell-adhesion molecule-1 ligand, respectively. Pulmonary instillation of SAgAs decreased disease score, improved weight gain, and decreased incidence of disease in EAE mice compared to pulmonary delivery of hyaluronic acid polymer, LABL, or PLP. Interestingly, treating with PLP alone also showed some improvement. Splenocytes from SAgA-treated animals showed increased interferon-gamma levels, and interleukin-6 (IL-6) and IL-17 were elevated in SAgA-treated animals compared to PLP treatments. IL-10, IL-2, and tumor necrosis factor-alpha levels showed no significant difference, yet trends across all cytokines suggested SAgAs induced a very different immune response compared to treatment with PLP alone. This work suggests that codelivery of peptide components is essential when treating EAE via pulmonary instillation, and the immune response may have shifted toward immune tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call