Abstract

Abstract Rheological properties of pullulan, sodium alginate and blend solutions were studied at 20 °C, using steady shear and dynamic oscillatory measurements. The intrinsic viscosity of pure sodium alginate solution was 7.340 dl/g, which was much higher than that of pure pullulan (0.436 dl/g). Pure pullulan solution showed Newtonian behavior between 0.1 and 100 s −1 shear rate range. However, increasing sodium alginate concentration in pullulan–alginate blend solution led to a shear-thinning behavior. The effect of temperature on viscosities of all solutions was well-described by Arrhenius equation. Results from dynamical frequency sweep showed that pure sodium alginate and blend solutions at 4% (w/w) polymer concentration were viscoelastic liquid, whereas the pure pullulan exhibited Newtonian behavior. The mechanical properties of pure sodium alginate and pullulan–alginate mixture were analyzed using the generalized Maxwell model and their relaxation spectra were determined. Correlation between dynamic and steady-shear viscosity was analyzed with the empirical Cox–Merz rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.