Abstract

The C-6 in the maltotriose unit of pullulan was oxidized in an alkaline medium (pH = 10), utilizing a green method that included hydrogen peroxide (H2O2) as an oxidant and N-hydroxyphthalimide (NHPI) as a catalyst for various reaction times. The structure of the resulting oxidized pullulans (PO) was carefully characterized by titration, intrinsic viscosity, FTIR, 13C-NMR, and zeta potential. The content of carboxyl groups in PO was dependent on reaction time and varied accordingly. Furthermore, a fast reaction rate was found in the first 2–3 h of the reaction, followed by a decreased rate in the subsequent hours. FTIR and 13C-NMR proved that the selective oxidation of the primary alcohol groups of pullulan was achieved. The oxidation also caused the glycoside linkages in the pullulan chain to break, and the viscosity of the pullulan itself went down.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.