Abstract

The mechanical properties of geogrid-soil interface is very important in design and stability analysis of reinforced soil structure. In order to study the complicated mechanism of geogrid-soil interface, a series of pullout tests of HDPE uniaxial tensile geogrids with the different transverse ribs spacing is used to investigate the interaction characteristics in the laboratory. The test results show that pullout force and displacement curves are characterized as strain softening; compared with the no-reinforced case, the case reinforced with geogrid has larger cohesion and lower friction angles. The ductility of soil is enhanced due to geogrid reinforcement. Based on the basic control equations of the interface and damage theory, trilinear shear stress-displacement damage softening model is proposed to describe the strain-softening characteristics of geogrid-soil interface. Analytical solutions of interface tension, shear stress, and displacement at different stages are derived considering strain softening based on damage, and the development of shear stress and progressive failure mode of the geogrid-soil interface at different pullout stages is revealed. Furthermore, the proposed model is verified by experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.