Abstract

Cell collectives must dynamically adapt to different biological contexts. For instance, in homeostatic conditions, epithelia must establish a barrier between body compartments and resist external stresses, while during development, wound healing or cancer invasion, these tissues undergo extensive remodeling. Using analogies from inert, passive materials, changes in cellular density, shape, rearrangements and/or migration were shown to result in collective transitions between solid and fluid states. However, what biological mechanisms govern these transitions remains an open question. In particular, the upstream signaling pathways and molecular effectors controlling the key physical axes determining tissue rheology and dynamics remain poorly understood. In this perspective, we focus on emerging evidence identifying the first biological signals determining the collective state of living tissues, with an emphasis on how these mechanisms are exploited for functionality across biological contexts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call