Abstract

Abstract One of the major brownfields in offshore India was producing for three decades from main carbonate reservoirs of the Eocene and Oligocene age. Average production of this brownfield is approximately 11,000 barrels of oil per day (BOPD). To maintain the declining reservoir pressure, the field has been under active water injection for more than two decades. However, being a complex carbonate reservoir with high textural heterogeneity, the water-front movement is not very well understood and monitored. To increase the oil production, the operator started drilling horizontal drain-holes from the platforms and has adopted a conventional perforated and blind tubing combination as a completion strategy. However, it was found that wells were performing poorly with very high water cut. An integrated and comprehensive petrophysical workflow was applied that used data analysis and the added value of advanced 3D acoustic data in combination with nuclear magnetic resonance (NMR) data to provide a rapid realistic solution to avoid such high watercut through optimizing the completion strategy. This led to a production gain in this offshore field, which was underperforming as per earlier predictions and expectations. Conventional well-log based qualitative evaluation for horizontal segmentation strategy was rejected in favor of an integrated approach for lateral reservoir facies delineation. Lateral petrophysical property characterization was carried out through quick integration of NMR pore-size driven facies analysis, advanced acoustic radial profiling, anisotropy, and Stoneley analysis. Permeability profiling along the horizontal drain-hole section using NMR and acoustics provided critical insight. Those were integrated to avoid potential high permeability conduits of thief zones for water breakthrough. A rock-quality index was derived to optimize the completion strategy soon after the logging, even preceding the rig-down of the acquisition runs and lowering of the completion. Zones with higher skin, deeper formation damage, and lower rock-mechanical properties were avoided for efficient swell-packer placements. The well started producing and continued production with only 10% water cut along with 450 barrels of oil compared to an average 90% watercut and 100 barrels of oil from the other wells of the same platform, which used the older nonoptimized completion strategy. Based on the promising result for the first well, the same workflow was used for two similar wells of other two different platforms inthe same field, which also resulted in similar production with enhanced oil production and reduced water cut. The study using the rapid integrated evaluation workflow established efficient zonal isolation of high permeability thief zones with accuracy for timely optimization of horizontal well segmentation, which assisted in pulling higher production in this brownfield by reducing unwanted water production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.