Abstract

Truck pulling is one of the common manual materials handling tasks which contribute to musculoskeletal disorders. The maximum endurance time (MET) for two-handed truck pulling tasks has been rarely discussed in the literature. The objectives of this study were to explore the development of muscular fatigue when performing two-handed pulling task and to establish models to predict the MET. A simulated pallet truck pulling experiment was conducted. Sixteen healthy adults including eight females and eight males participated. The participants pulled a handle simulating that of a pallet truck using two hands until they could not pull any longer under two postures. The forces applied for females and males were 139.65 N and 170.03 N, respectively. The maximum voluntary contractions (MVC) of the pulling strength both before and after the simulated pull were measured. After each trial, both the MET and subjective ratings of muscular fatigue on body segments were recorded. The results showed that posture significantly affected MVC of pull both before and after the trial. It was found that foot/shank of the front leg had higher subjective ratings of muscular fatigue than the other body segments. The MET equations employing both power and logarithmic functions were developed to predict the MET of the two-handed pulling tasks. Predictive models established in this study may be used to assess the MET for two-handed pulling tasks.

Highlights

  • Manual Material handlings (MMH) are common at workplaces

  • The Kolomogorov-Smirnov test results confirmed the normality of the pulling strength data (p>0.15)

  • Right-hander involuntarily put their right foot on the front when they pulled

Read more

Summary

Introduction

Manual Material handlings (MMH) are common at workplaces. They contribute to the occurrence of work-related musculoskeletal disorders (MSDs) [1]. Trolleys, and pallet trucks are commonly used materials handling aids [2]. These aids are either pushed or pulled manually. A survey [3] conducted in automotive supply sectors showed that approximately 10% of all working processes involved pushing or pulling. Forty one percent of the materials handled in one transport were between 200 kg and 1000 kg. In the USA, 20% of all industrial back injuries were associated with pulling or pushing tasks [4].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call