Abstract
MEMS sensors, such as acoustic, noise and vibration transducers often employ a diaphragm or cantilevered structure as part of a variable capacitance sensor geometry. A bias voltage is necessary to ensure a linear force-capacitance range of operation. The calculation of the pull-in voltage whereby the sensing structure collapses due to electrostatic forces is an important design requirement. A linearized, uniform approximate model of the nonlinear electrostatic pressure has been developed and used in conjunction with the load deflection model of a MEMS cantilever beam under uniform pressure to develop a highly accurate model to calculate the pull-in voltage. The new model improves sensor design methodology by evaluating the pull-in voltage for a cantilever beam with a maximum deviation of less than 1% from the finite element analysis results for wide beams and for narrow beams with extreme fringing fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.