Abstract

In this paper we study the existence of pullback global attractors for multivalued processes generated by differential inclusions. First, we define multivalued dynamical processes, prove abstract results on the existence of ω-limit sets and global attractors, and study their topological properties (compactness, connectedness). Further, we apply the abstract results to nonautonomous differential inclusions of the reaction–diffusion type in which the forcing term can grow polynomially in time, and to stochastic differential inclusions as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.