Abstract
AbstractThis paper presented the experimental results of the strength capacity of studs embedded centrally in concrete with red mud synthetic coarse aggregates, with the variation of the handcrafted headed stud thickness (3.17, 4.76, 6.35, and 7.9 mm) and no shank bond influence with concrete. The results regarding the compressive strength of concrete showed considerable strength gain with synthetic coarse aggregate, ranging from 27.00 to 43.50 MPa, while in concrete with natural coarse aggregate, the variation was 27.00 to 36.50 MPa. Also, it was observed that the cracking in the concrete matrix of the synthetic coarse aggregate occurred in the aggregate instead of the transition zone, as occurred with the natural coarse aggregate concrete. However, the solid morphological formation of synthetic coarse aggregate provided excellent chemical adhesion to the headed stud, providing a hardening failure behavior after reaching the yield strength value of the steel bar with higher displacements. This can enable the optimized consumption of materials in the dosage of low‐strength structural concrete and the anchoring application of studs with smaller‐headed thicknesses, up to 8% of head diameter, generating economy and sustainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.