Abstract

Pull-in instability of the electrostatic microstructures is a common undesirable phenomenon which implies the loss of reliability of micro-electromechanical systems. Therefore, it is necessary to understand its mechanism and then reduce the phenomenon. In this work, pull-in instability of a typical electrostatic MEMS resonator is discussed in detail. Delayed position feedback and delayed velocity feedback are introduced to suppress pull-in instability, respectively. The thresholds of AC voltage for pull-in instability in the initial system and the controlled systems are obtained analytically by the Melnikov method. The theoretical predictions are in good agreement with the numerical results. It follows that pull-in instability of the MEMS resonator can be ascribed to the homoclinic bifurcation inducing by the AC and DC load. Furthermore, it is found that the controllers are both good strategies to reduce pull-in instability when their gains are positive. The delayed position feedback controller can work well only when the delay is very short and AC voltage is low, while the delayed velocity feedback will be effective under a much higher AC voltage and a wider delay range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.