Abstract

The northern Mergui Basin (Andaman Sea) contains east-northeast–west-southwest– to northeast-southwest–striking normal fault–bound basins, and north-northwest–south-southeast–trending strike-slip faults. The two largest strike-slip faults (Manora and Mergui) pass into extensional or transtensional basins at their tips, consistent with dextral offset. The faults provide examples of early stage pull-apart basin development at fault tips instead of the more common model for development at releasing bends. Offset of isochron markers for the Ranong Formation indicate that ∼8 km of dextral offset has occurred along the Mergui fault and 4.5 km of dextral offset has occurred on the Manora fault. The strike-slip faults and associated extensional faults formed relatively late for the history of the entire Mergui Basin during the Early Miocene. The northern part of the Mergui Basin developed after a phase of west-northwest-east-southeast extension during the Oligocene in the Mergui Basin to the south, indicating a rotation in the extension direction toward the north-northwest–south-southeast with time. The basin is part of a major transtensional system involving the Sumatra, West Andaman, and Sagaing faults that accommodated the northern motion of western Myanmar as India moved north relative to Southeast Asia. Fault activity in the northern Mergui Basin decreased significantly when the broad zone of Early Miocene transtension became focused on the Alcock and Sewell Rises during the Middle Miocene, and the West Andaman and Sagaing faults began to develop and interacted in a large pull-apart geometry with the Shan Scarp Fault, and later (Late Miocene or Pliocene) with the Sagaing Fault.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call