Abstract

Abstract Dust gaps and rings appear ubiquitous in bright protoplanetary disks. Disk–planet interaction with dust trapping at the edges of planet-induced gaps is one plausible explanation. However, the sharpness of some observed dust rings indicate that sub-millimeter-sized dust grains have settled to a thin layer in some systems. We test whether or not such dust around gas gaps opened by planets can remain settled by performing three-dimensional, dust-plus-gas simulations of protoplanetary disks with an embedded planet. We find planets massive enough to open gas gaps stir small, sub-millimeter-sized dust grains to high disk elevations at the gap edges, where the dust scale height can reach ∼70% of the gas scale height. We attribute this dust “puff up” to the planet-induced meridional gas flows previously identified by Fung & Chiang and others. We thus emphasize the importance of explicit 3D simulations to obtain the vertical distribution of sub-millimeter-sized grains around gas gaps opened by massive planets. We caution that the gas-gap-opening planet interpretation of well-defined dust rings is only self-consistent with large grains exceeding millimeter size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call