Abstract

AimsThe purpose of this study was to investigate the protective effects of puerarin and elucidate the underlying mechanisms of puerarin in myocardial ischemia/reperfusion (MI/R) injury. Main methodsC57BL/6 mice were exposed to puerarin (100 mg/kg) with or without the SIRT1 inhibitor nicotinamide (500 mg/kg) and then subjected to MI/R operation. Myocardial infarct size, serum creatine kinase-MB (CK-MB) activity, apoptotic cell death, and cardiac structure and function were examined to evaluate MI/R injury. RT-PCR and western blotting were used to determine the inflammatory response and inflammasome activation, as well as activation of SIRT1/NF-κB pathway. ResultsPuerarin significantly reduced myocardial infarct size, serum CK-MB activity, and apoptotic cell death, and improved cardiac structural damage and dysfunction. Moreover, puerarin notably decreased the mRNA and protein levels of TNF-α, IL-6, and IL-1β, indicating that puerarin attenuated MI/R-induced inflammation. Furthermore, puerarin markedly decreased the protein levels of Ac-NF-κB, NLRP3, cleaved caspase-1, cleaved IL-1β, and cleaved IL-18 and increased the protein level of SIRT1. More importantly, the SIRT1 inhibitor nicotinamide prevented these puerarin-induced cardioprotective effects and regulation of the SIRT1/NF-κB pathway, as well as the NLRP3 inflammasome activation. ConclusionPuerarin protected against MI/R injury by inhibiting inflammatory responses probably via the SIRT1/NF-κB pathway, and inhibition of the NLRP3 inflammasome was also involved in puerarin-induced cardioprotective effects. These results suggest that puerarin may be a novel candidate for the treatment of ischemic heart disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call