Abstract

Objective. Puerarin is a natural flavonoid isolated from the TCM lobed kudzuvine root. This study investigated the effect and mechanisms of puerarin on diabetic aorta in rats. Methods. Streptozotocin- (STZ-) induced diabetic rats were administered with puerarin for 3 weeks. Levels of serum insulin (INS), PGE2, endothelin (ET), glycated hemoglobin (GHb), H2O2, and nitric oxide (NO) in rats were measured by ELISA and colorimetric assay kits. The aortas were stained with H&E. Moreover, the mRNA expression of ICAM-1, LOX-1, NADPH oxidase 2 (NOX2), and NOX4 and the protein expression of ICAM-1, LOX-1, NF-κB p65, E-selectin, NOX2, and NOX4 in aorta tissues were measured by real-time PCR and Western blot, respectively. The localization of ICAM-1, NF-κB p65, NOX2, and NOX4 in the aorta tissues was also determined through immunohistochemistry. Results. Puerarin treatment exerted no effect on fasting blood glucose levels but significantly reduced the serum levels of INS, GHb, PGE2, ET, H2O2, and NO. In addition, puerarin improved the pathological alterations and inhibited the expression of ICAM-1, LOX-1, NOX2, and NOX4 at both mRNA and protein levels. Puerarin also significantly reduced the number of cells showing positive staining for ICAM-1, NOX2, NOX4, and NF-κB p65. Conclusion. Puerarin demonstrated protective effect on the STZ-induced diabetic rat aorta. The protective mechanisms may include regulation of NF-κB and inhibition of NOX2 and NOX4 followed by inhibition of cell adhesion molecule expression.

Highlights

  • Diabetes, a chronic disease characterized by hyperglycemia, has become a major health crisis worldwide

  • The primary antibodies for intercellular adhesion molecule-1 (ICAM-1), LOX-1, and NF-κB p65 were purchased from Proteintech Group, Inc. (Wuhan, China), Abcam (USA), and Boster (Wuhan, China), respectively, whereas those for NADPH oxidase 2 (NOX2), NOX4, and E-selectin were purchased from Santa Cruz Biotechnology

  • Regardless of its clinical categories, is a metabolic disease characterized by high blood glucose level over a prolonged period

Read more

Summary

Introduction

A chronic disease characterized by hyperglycemia, has become a major health crisis worldwide. Diabetes leads to an array of chronic microvascular (retinopathy, nephropathy, and neuropathy) and macrovascular (atherosclerosis, ischemic heart disease, stroke, and peripheral vascular disease) complications. These chronic complications are the major causes of the reduced quality of life among diabetics, increased burden to the health care system, and increased diabetes-related mortality [2]. The microvascular complications are directly related to the severity and duration of hyperglycemia, the macrovascular complications are the primary causes of mortality, with myocardial infarction and stroke accounting for 80% of all deaths among. Inhibiting and alleviating the macrovascular complications have become a major challenge in diabetes treatment

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call