Abstract

Puerarin, which is a widely used in Traditional Chinese Medicine, was previously demonstrated to regulate the subsets of CD4+ lymphocytes in gunpowder smog-induced acute lung injury (ALI). However, the underlying mechanism remains largely unknown. Previous studies on autoimmune diseases have revealed that the renin-angiotensin system (RAS) and NF-κB participate in regulating the levels of CD4+ T lymphocytes. The aim of the present study was to further investigate the mechanisms underlying the protective effects of puerarin. Wistar rats were randomly divided into four groups as follows: Normal control, puerarin control, smoke inhalation injury and puerarin treatment plus smoke inhalation injury groups. The levels of angiotensin II (Ang II) in lung tissue and in the circulation, and the levels of interleukin (IL)-6, IL-1β, IL-17A and tumor necrosis factor (TNF)-α in the bronchoalveolar lavage fluid (BALF) were assayed using ELISA kits. The expression of Ang II type 1 receptor (AT1-R), angiotensin-converting enzyme (ACE) and ACE2 were examined by immunohistochemical analysis and western blotting. Phosphorylated (p-) NF-κB p65 and NF-κB inhibitor α (IκB-α) protein expression levels were also determined using western blotting. Puerarin treatment reduced the levels of inflammatory cytokines in the BALF. Furthermore, puerarin treatment significantly decreased the levels of Ang II, AT1-R and ACE, which were increased following smoke inhalation. Conversely, puerarin treatment upregulated the expression of ACE2, which was downregulated following smoke inhalation. Additionally, puerarin decreased the expression of p-NF-κB p65 and increased that of IkB-α. Thus, the antiinflammatory effects of puerarin were partly mediated via the RAS and via regulation of the NFĸB signaling pathway in rats with gunpowder smog-induced ALI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.