Abstract

Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.

Highlights

  • One of the fastest growing sectors in recent years has undoubtedly been that of wireless sensor networks (WSNs)

  • 6.1 Simulation tools The proposed countermeasures have been tested on a Cognitive wireless sensor network (CWSN) simulator [15]

  • The CWSN simulator is responsible for scenario definition, spectrum state simulation, and communication between nodes from the physical to the application layer

Read more

Summary

Introduction

One of the fastest growing sectors in recent years has undoubtedly been that of wireless sensor networks (WSNs). We can use other parameters such as power transmission or time between packets to detect behavior anomalies in CWSNs. To the best of our knowledge, this is the first time that the anomaly detection approach is applied for PUE attacks on CWSNs. Other cognitive features such as spectrum sensing and learning make it possible to implement the algorithms. If the attacker is a selfish PUE, the malicious node has to change its power transmission or transmission rate in order to acquire more spectrum time.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.