Abstract

We discuss the emission of gravitational radiation produced in encounters of dark matter galactic halos. To this aim we perform a number of numerical simulations of typical galaxy mergers, computing the associated gravitational radiation waveforms as well as the energy released in the processes. Our simulations yield dimensionless gravitational wave amplitudes of the order of $10^{-13}$ and gravitational wave frequencies of the order of $10^{-16}$ Hz, when the galaxies are located at a distance of 10 Mpc. These values are of the same order as those arising in the gravitational radiation originated by strong variations of the gravitational field in the early Universe, and therefore, such gravitational waves cannot be directly observed by ground-based detectors. We discuss the feasibility of an indirect detection by means of the B-mode polarization of the Cosmic Microwave Background (CMB) induced by such waves. Our results show that the gravitational waves from encounters of dark matter galactic halos leave much too small an imprint on the CMB polarization to be actually observed with ongoing and future missions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.