Abstract

Outsourcing storage and computation to the cloud has become a common practice for businesses and individuals. As the cloud is semi-trusted or susceptible to attacks, many researches suggest that the outsourced data should be encrypted and then retrieved by using searchable symmetric encryption (SSE) schemes. Since the cloud is not fully trusted, we doubt whether it would always process queries correctly or not. Therefore, there is a need for users to verify their query results. Motivated by this, in this paper, we propose a publicly verifiable dynamic searchable symmetric encryption scheme based on the accumulation tree. We first construct an accumulation tree based on encrypted data and then outsource both of them to the cloud. Next, during the search operation, the cloud generates the corresponding proof according to the query result by mapping Boolean query operations to set operations, while keeping privacy preservation and achieving the verification requirements: freshness, authenticity, and completeness. Finally, we extend our scheme by dividing the accumulation tree into different small accumulation trees to make our scheme scalable. The security analysis and performance evaluation show that the proposed scheme is secure and practical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.