Abstract
High-resolution, high-quality exposure modeling is critical for assessing the health effects of ambient PM2.5 in epidemiological studies. Using sparse regulatory PM2.5 measurements as principal model inputs may result in two issues in exposure prediction: (1) they may affect the models’ accuracy in predicting PM2.5 spatial distribution; (2) the internal validation based on these measurements may not reliably reflect the model performance at locations of interest (e.g., a cohort’s residential locations). In this study, we used the PM2.5 measurements from a publicly available commercial low-cost PM2.5 network, PurpleAir, with an external validation dataset at the residential locations of a representative sample of participants from the Adult Changes in Thought - Air Pollution (ACT-AP) study, to improve the accuracy of exposure prediction at the cohort participant locations. We also proposed a metric based on principal component analysis (PCA) - the PCA distance - to assess the similarity between monitor and cohort locations to guide monitor deployment and data selection. The analysis was based on a spatiotemporal modeling framework with 51 “gold-standard” monitors and 58 PurpleAir monitors for model development, as well as 105 home monitors at the cohort locations for model validation, in the Puget Sound region of Washington State from June 2017 to March 2019. After including calibrated PurpleAir measurements as part of the dependent variable, the external spatiotemporal validation R2 and root-mean-square error, RMSE, for two-week concentration averages improved from 0.84 and 2.22 μg/m3 to 0.92 and 1.63 μg/m3, respectively. The external spatial validation R2 and RMSE for long-term averages over the modeling period improved from 0.72 and 1.01 μg/m3 to 0.79 and 0.88 μg/m3, respectively. The exposure predictions incorporating PurpleAir measurements demonstrated sharper urban-suburban concentration gradients. The PurpleAir monitors with shorter PCA distances improved the model’s prediction accuracy more substantially than the monitors with longer PCA distances, supporting the use of this similarity metric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.