Abstract

The process of manufacturing iron cores for electric machines out of electrical steel sheets can strongly affect the magnetic properties of the material. In order to better understand the influence of cutting on the iron losses, a characterization of the magnetization behavior near the cutting edge is needed. The local magnetic properties of the material are modified by the cutting process which leads to an increase in the iron losses measured for 5 mm wide ring core samples by nearly 160% at low inductions. We present investigations on the effect of cutting by observation of the magnetic domain structure of 0.35 mm thick non-oriented electrical steel. By using the magneto-optical Kerr-effect on a ring samples the local magnetic properties of the material after processing are characterized in the form of domain wall displacements under an applied external ac-field. The influence of various cutting techniques on the magnetic properties was studied before and after stress relief annealing. This method allows a quantitative analysis of the influence of different cutting techniques on the micro-magnetic properties of non-oriented electrical steel for rotating machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.