Abstract
Traitor tracing schemes are of major importance for secure distribution of digital content. They indeed aim at protecting content providers from colluding users to build pirate decoders. If such a collusion happens, at least one member of the latter collusion will be detected. Several solutions have already been proposed in the literature, but the most important problem to solve remains having a very good ciphertext/plaintext rate. At Eurocrypt '02, Kiayias and Yung proposed the first scheme with such a constant rate, but still not optimal. In this paper, granted bilinear maps, we manage to improve it, and get an “almost” optimal scheme, since this rate is asymptotically 1. Furthermore, we introduce a new feature, the “public traceability”, which means that the center can delegate the tracing capability to any “untrusted” person. This is not the first use of bilinear maps for traitor tracing applications, but among the previous proposals, only one has remained unbroken: we present an attack by producing an anonymous pirate decoder. We furthermore explain the flaw in their security analysis. For our scheme, we provide a complete proof, based on new computational assumptions, related to the bilinear Diffie-Hellman ones, in the standard model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.