Abstract
High-wattage demand-side appliances such as Plug-in Electric Vehicles (PEVs) are proliferating. As a result, information on the charging patterns of PEVs is becoming accessible via smartphone applications, which aggregate real-time availability and historical usage of public PEV charging stations. Moreover, information on the power grid infrastructure and operations has become increasingly available in technical documents and real-time dashboards of the utilities, affiliates, and the power grid operators. The research question that this study explores is: Can one combine high-wattage demand-side appliances with public information to launch cyberattacks on the power grid? To answer this question and report a proof of concept demonstration, the study scrapes data from public sources for Manhattan, NY, USA using the electric vehicle charging station smartphone application and the power grid data circulated by the U.S. Energy Information Administration, New York Independent System Operator, and the local utility in New York. It then designs a novel data-driven cyberattack strategy using state-feedback based partial eigenvalue relocation, which targets frequency stability of the power grid. The study establishes that while such an attack is not possible at the current penetration level of PEVs, it will be practical once the number of PEVs increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.