Abstract

Public-key searchable encryption allows keyword-associated tokens to be used to test if a ciphertext contains specific keywords. Due to the low entropies of keywords, the token holder can create ciphertexts from candidate keywords and test them using the token in hand to recover the keywords, known as inside keyword guessing attacks (IKGA). Public-key authenticated encryption with keyword search is a searchable encryption proposed to defend against such attacks. It ensures the sender's private key protects the ciphertexts from the IKGA. PAEKS schemes with reasonable security and practical efficiency remain elusive despite many proposals. This work provides a simple generic PAEKS scheme from non-interactive key exchange (NIKE) and symmetric-key equality-predicate encryption with three new constructions for the latter, respectively from pseudorandom functions (PRFs), the decision bilinear Diffie-Hellman assumption, and the learning-with-errors assumption. Instantiating our generic scheme, we derive several PAEKS schemes from the most well-known assumptions, with some of them achieving full cipher-keyword indistinguishability and full token indistinguishability in the standard model, for the first time. Our instantiated schemes allow practical implementations and outperform the existing PAEKS schemes under the same assumptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call