Abstract

The current geopolitical situation and the war on Ukraine’s territory generate questions about the possible use of a nuclear weapon and create the need to refresh emergency protective plans for the population. Ensuring the protection of public health is a national responsibility, but the problem is of international size and global scale. Radiological or nuclear disasters need suitable decision making at the right time, which determine large effective radiation protection activities to ensure public health is protected, reduce fatalities, radiation disease, and other effects. In this study, a simulation of a single nuclear weapon detonation with an explosion yield of 0.3 and 1 Mt was applied for a hypothetical location, to indicate the required decision making and the need to trigger protocols for the protection of the population. The simulated explosion was located in a city center, in a European country, for the estimation of the size of the effects of the explosion and its consequences for public health. Based on the simulation results and knowledge obtained from historical nuclear events, practical suggestions, discussion, a review of the recommendations was conducted, exacerbated by the time constraints of a public health emergency. Making science-based decisions should encompass clear procedures with specific activities triggered immediately based on confirmed information, acquired from active or/and passive warning systems and radiometric specific analysis provided by authorized laboratories. This study has the potential to support the preparedness of decision makers in the event of a disaster or crisis-related emergency for population health management and summarizes the strengths and weaknesses of the current ability to respond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call