Abstract

Social recognition is an ability of animals to identify and distinguish conspecifics, which is essential for nearly all social species to establish social relationships. Social recognition provides the basis for a variety of social behaviors. Because of modulated by gonadal hormones, it is possible that social cognition is affected by environmental endocrine disruptors (EEDs). In the present study, after being pubertal exposed to bisphenol A (BPA, 0.04, 0.4, and 4 mg/kg) for 18 days, adult male mice did not show significant dishabituation to a novel female stimulus in habituation-dishabituation task. The capacity for discriminating the odors between familiar and novel female urine or between male and female urine was suppressed in BPA-exposed male. In addition, BPA (0.4, 4 mg/kg) decreased the number of immunoreaction of AVP (AVP-ir) neurons in both the bed nucleus of the stria terminalis (BNST) and the medial amygdala (MeA), and BPA (0.04, 0.4, 4 mg/kg) reduced the level of V1αR in the lateral septum (LS) of adult male. Further, BPA decreased the levels of testosterone (T) in the brain and androgens receptor (AR) in the LS, the amygdala, and BNST, as well the levels of estrogen receptor α and β (ERα/β) in the amygdala and BNST. These results indicate that pubertal exposure to BPA affected the actions of both androgens and estrogens in the brain and inhibited AVP system of social circuits, and these alterations may be associated with impaired social recognition of adult male mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call