Abstract
The quantum analogue of ptychography, a powerful coherent diffractive imaging technique, is a simple method for reconstructing d-dimensional pure states. It relies on measuring partially overlapping parts of the input state in a single orthonormal basis and feeding the outcomes to an iterative phase retrieval algorithm for postprocessing. We provide a proof of concept demonstration of this method by determining pure states given by superpositions of d transverse spatial modes of an optical field. A set of n rank-r projectors, diagonal in the spatial mode basis, is used to generate n partially overlapping parts of the input, and each part is projectively measured in the Fourier transformed basis. For d up to 32, we successfully reconstructed hundreds of random states using n=5 and n=d rank-⌈d/2⌉ projectors. The extension of quantum ptychography for other types of photonic spatial modes is outlined.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.