Abstract

Pharmacological manipulations were used to examine the role of G proteins in modulating synaptic transmission at the frog neuromuscular junction. Pertussis toxin (PTX, a G protein antagonist) increased end-plate potential (epp) amplitude but had no effect on the amplitude or frequency of miniature end-plate potentials. Mastoparan (a G protein agonist) decreased epp amplitude, while suramin (an antagonist) increased epp amplitude. The results suggest that PTX-sensitive G proteins tonically modulate synaptic transmission by reducing the amount of transmitter released in response to presynaptic action potentials. We also showed that endogenous ATP decreased transmitter release via P2 receptor in a PTX-insensitive manner. Thus, at least two distinct mechanisms regulate neuromuscular transmission; one is coupled to PTX-sensitive G proteins and the other is not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.