Abstract

Nuclear factor-κB (NF-κB) activation in hepatocytes and macrophages appeared as a double-edged-sword in hepatic ischemia reperfusion (IR) injury. Protein tyrosine phosphatase receptor type O (PTPRO) was recently identified as a potential activator of c-Src, which can in turn activate the NF-κB pathway. In this study, we aimed to determine the change and function of PTPRO in hepatocytes and macrophages during IR. Clinical patients with benign liver condition undergoing liver surgery were recruited in our study. Wild type (WT) and ptpro(-/-) C57BL/6 mice were processed to construct hepatic IR models. Isolated mouse hepatocytes and macrophages were treated with peroxide or TNFα in vitro. In human and mouse IR models, PTPRO level was decreased in the early phase but reversed in the late phase. In vitro studies demonstrated that NF-κB up-regulated PTPRO transcription. Using ptpro(-/-) mice and primary cells, we found that PTPRO deficiency resulted in reduction of NF-κB activation in both hepatocytes and macrophages and was correlated to c-Src phosphorylation; PTPRO in hepatocytes alleviated, but PTPROt in macrophages exacerbated IR injury. PTPRO activates NF-κB in a positive feedback manner, and plays a dual role in hepatic IR injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call