Abstract

Receptor‐type protein tyrosine phosphatase κ (PTPRK) is considered to be a candidate tumor suppressor. PTPRK dephosphorylates CD133, which is a stem cell marker; phosphorylated CD133 accelerates xenograft tumor growth of colon cancer cells through the activation of AKT, but the functional significance of this has remained elusive. In this study, we have demonstrated that knockdown of PTPRK potentiates the pro‐oncogenic CD133–AKT pathway in colon cancer cells. Intriguingly, depletion of PTPRK significantly reduced sensitivity to the anti‐cancer drug oxaliplatin and was accompanied by up‐regulation of phosphorylation of Bad, a downstream target of AKT. Together, our present observations strongly suggest that the CD133–PTPRK axis plays a pivotal role in the regulation of colon cancer progression as well as drug resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.