Abstract
Background: Ovarian cancer is the 7th most common cancer and 8th most mortal cancer among woman. The standard treatment includes cytoreduction surgery followed by chemotherapy. Unfortunately, in most cases, after treatment, cancer develops drug resistance. Decreased expression and/or activity of protein phosphatases leads to increased signal transduction and development of drug resistance in cancer cells. Methods: Using sensitive (W1, A2780) and resistant ovarian cancer cell lines, the expression of Protein Tyrosine Phosphatase Receptor Type K (PTPRK) was performed at the mRNA (real-time PCR analysis) and protein level (Western blot, immunofluorescence analysis). The protein expression in ovarian cancer tissues was determined by immunohistochemistry. Results: The results showed a decreased level of PTPRK expression in ovarian cancer cell lines resistant to cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX), topotecan (TOP), vincristine (VIN) and methotrexate (MTX). Additionally, the lower PTPRK expression was observed in Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) positive cancer stem cells (CSCs) population, suggesting the role of PTPRK downregulation in primary as well as acquired resistance to cytotoxic drugs. Conclusions: These results provide important insights into the role of PTPRK in mechanism leading to drug resistance in ovarian cancer and has raised important questions about the role of imbalance in processes of phosphorylation and dephosphorylation.
Highlights
Over the past century, there has been a dramatic increase in cancer diseases
The present study aimed to examine the expression of Phosphatase Receptor Type K (PTPRK) in ovarian cancer cell lines resistant to: CIS, PAC, DOX, TOP, VIN, and MTX and the impact of this molecule expression on total phosphotyrosine level and drug resistance
According to our knowledge, the presented study is the first report about PTPRK expression in drug resistant cell lines and in ovarian cancer tissue
Summary
There has been a dramatic increase in cancer diseases. Globally, ovarian cancer is the 7th most common cancer and 8th most mortal cancer among woman. Of histological type of the ovarian cancer [3] platinum-based chemotherapy in combination with paclitaxel (PAC) or platinum-based therapy alone is the standard of care for first-line [4]. In most cases after treatment, cancers develop drug resistance. Decreased expression and/or activity of protein phosphatases leads to increased signal transduction and development of drug resistance in cancer cells. Methods: Using sensitive (W1, A2780) and resistant ovarian cancer cell lines, the expression of Protein Tyrosine Phosphatase Receptor Type K (PTPRK) was performed at the mRNA (real-time PCR analysis) and protein level (Western blot, immunofluorescence analysis). Results: The results showed a decreased level of PTPRK expression in ovarian cancer cell lines resistant to cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX), topotecan (TOP), vincristine (VIN) and methotrexate (MTX). Conclusions: These results provide important insights into the role of PTPRK in mechanism leading to drug resistance in ovarian cancer and has raised important questions about the role of imbalance in processes of phosphorylation and dephosphorylation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.