Abstract

Protein tyrosine phosphatase 1B (PTP1B) plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1), and two known metabolites, anhydrofulvic acid (2) and citromycetin (3). Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1) also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1) on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1) suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1.

Highlights

  • Recent studies of marine natural products have focused on marine microorganisms as an untapped source of secondary metabolites [1,2]

  • In cells treated with non-cytotoxic concentrations of penstyrylpyrone (1) (5–40 μM for h), we found a concentration-dependent increase in the protein heme oxygenase (HO)-1 expression (Figure 6A)

  • Phenylpropanoids are well-known plant secondary metabolites, very little is known about phenylpropanoids in the fungal metabolites community [25]

Read more

Summary

Introduction

Recent studies of marine natural products have focused on marine microorganisms as an untapped source of secondary metabolites [1,2]. Marine-derived fungi, are fertile producers of new structurally interesting compounds, and are recognized as an important source of structurally novel and bioactive secondary metabolites for drug discovery [3,4,5,6]. In this respect, we have recently initiated our studies of the secondary metabolites from marine-derived fungi with interest in new pharmacological activities and mechanisms of the activities related to anti-diabetic activity via PTP1B inhibition and anti-inflammatory activity involving heme oxygenase (HO)-1 expression [7,8]. PTP1B is an attractive target in the development of new treatments for type 2 diabetes and other related metabolic syndromes [14,15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call