Abstract
Septic lung injury is an unmet clinical challenge due to its high mortality, and there is a lack of effective treatment. Accumulating evidence suggests that an uncontrolled pulmonary inflammatory response is important in the pathogenesis of lung injury in sepsis. Therefore, limiting excessive early inflammatory responses may be an effective strategy. We established a septic lung injury model using cecal ligation and puncture. Western blotting and immunofluorescence analyses were performed to assess the expression of PTP1B and endoplasmic reticulum (ER) stress and pyroptosis. Co-immunoprecipitation was used to analyze the binding of PTP1B and Src molecules. PTP1B is upregulated in both in vivo and in vitro models of septic lung injury. PTP1B directly binds to Src and aggravates inflammation by regulating the ER stress-pyroptosis axis. The inhibition of PTP1B alleviates inflammation and improves the prognosis of septic mice. Our study suggesting that PT1B inhibitors have clinical application value in the treatment of septic lung injury. This may provide a new strategy for the treatment of septic lung injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.