Abstract
Supported bimetallic nanoparticles (BNPs) are promising catalysts, but study on their compositional and structural changes under reaction conditions remains a challenge. In this work, the structure of PtNi BNPs supported on UiO-67 metal–organic framework (MOF) catalyst (i.e., PtNi@UiO-67) was investigated by in situ by near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS). The results showed differences in the reduction behaviour of Ni species in PtNi BNPs and monometallic Ni supported on UiO-67 catalysts (i.e., PtNi@UiO-67 and Ni@UiO-67), suggesting charge transfer between metallic Pt and Ni oxides in PtNi@UiO-67. Under CO oxidation conditions, Ni oxides segregated to the outer surface of the BNPs forming a thin layer of NiOx on top of the metallic Pt (i.e., a NiOx-on-Pt structure). This resulted in a core-shell structure which was confirmed by high-resolution scanning transmission electron microscopy (HR-STEM). Accordingly, the layer of NiOx on PtNi BNPs, which is stabilised by charge transfer from metallic Pt, was proposed as the possible active phase for CO oxidation, being responsible for the enhanced catalytic activity observed in the bimetallic PtNi@UiO-67 catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.