Abstract
An economic and effective Pt-based alloy cocatalyst has attracted considerable attention due to their excellent catalytic activity and reducing Pt usage. In this study, PtNi alloy cocatalyst was successfully decorated on the g-C3N4/GO hybrid photocatalyst via a facile chemical reduction method. The Eosin Y-sensitized g-C3N4/PtNi/GO-0.5% composite photocatalyst yields about 1.54 and 1178 times higher hydrogen evolution rate than the Eosin Y-sensitized g-C3N4/Pt/GO-0.5% and g-C3N4/Ni/GO-0.5% samples, respectively. Mechanism of enhanced performance for the g-C3N4/PtNi/GO composite was also investigated by different characterization, such as photoluminescence, transient photocurrent response, and TEM. These results indicated that enhanced charge separation efficiency and more reactive sites are responsible for the improved hydrogen evolution performance due to the positive synergetic effect between Pt and Ni. This study suggests that PtNi alloy can be used as an economic and effective cocatalyst for hydrogen evolution reaction.Graphical abstractA significant enhancement of photocatalytic H2 evolution is realized over the Eosin Y-sensitized g-C3N4/PtNi/GO composite with PtNi alloy as an efficient cocatalyst.
Highlights
Sustainable and large-scale hydrogen evolution from water using solar energy is considered to be one of the promising method toward solving the energy crisis and environmental pollution [1, 2]
An intimate contact formed between 2D-layered structure of g-C3N4 and the nanosheet structure of Graphene oxide (GO)
The small size of PtNi alloy cocatalyst will provide more reactive sites for hydrogen evolution, and the high dispersion of PtNi alloy cocatalyst is benefited to the electrons transfer from g-C3N4 and/or GO to PtNi cocatalyst
Summary
Sustainable and large-scale hydrogen evolution from water using solar energy is considered to be one of the promising method toward solving the energy crisis and environmental pollution [1, 2]. To achieve this goal, a visible-light response photocatalyst and an efficient cocatalyst are required [3,4,5]. Replacing part of Pt with transition metal (Ni, Co, Cu, Fe, etc.) to form a bimetallic alloy cocatalyst is a promising potential way for achieving excellent catalytic activity and reducing the use of Pt [9,10,11]. The catalytic performance of Pt-based bimetallic alloy cocatalyst is comparable with
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.