Abstract

Although permanganate (Mn(VII)) is extensively utilized as a strong oxidizer for the purification of water, the direct reaction rates between some refractory pollutants and Mn(VII) are moderate or relatively low. In this study, we found that 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO), could act as a redox mediator to enhance bisphenol A (BPA) degradation by Mn(VII) at pH 5.0 − 9.0, with a removal higher than 80% over 5 min. Moreover, the Mn(VII)/PTIO system is highly efficient toward a broad spectrum of contaminants. Mechanism was elucidated as following: PTIO was oxidized by Mn(VII) to PTIO+, an oxoammonium cation. As a newly generated reactive species, PTIO+ could oxidize organics and be reduced to PTIOH (PTIO hydroxylamine) or PTIO simultaneously. The redox cycle of PTIO in consecutive runs as an electron shuttle proved its stability and reusability in Mn(VII) oxidation. In addition to being an electron shuttle, PTIO also acts as an activator of Mn(VII) to promote the production of MnO2, which plays a vital role in enhancing BPA abatement at the acidic condition. For the purpose of further understanding the interaction between PTIO and target contaminants, three corresponding degradation pathways for BPA were proposed. Notably, the transformation products of BPA coupling with PTIO were detected, indicating PTIO inhibited the self-coupling of BPA and facilitated the ring-opening pathway. In addition, the ubiquitous humic acid has a positive effect on the Mn(VII)/PTIO system, suggesting a high promise of this system for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.