Abstract

Acute bladder distension causes various morphologic and functional changes, in part through altered gene expression. We aimed to investigate the physiologic role of PTHrP, which is up-regulated in an acute bladder distension model in female rats. In the control Empty group, bladders were kept empty for 6 hours, and in the Distension group, bladders were kept distended for 3 hours after an artificial storing-voiding cycle for 3 hours. In the Distention group bladder, up-regulation of transcripts was noted for 3 genes reported to be up-regulated by stretch in the cultured bladder smooth muscle cells in vitro. Further transcriptome analysis by microarray identified PTHrP as the 22nd highest gene up-regulated in Distension group bladder, among more than 27,000 genes. Localization of PTHrP and its functional receptor, PTH/PTHrP receptor 1 (PTH1R), were analyzed in the untreated rat bladders and cultured bladder cells using real-time RT-PCR and immunoblotting, which revealed that PTH1R and PTHrP were more predominantly expressed in smooth muscle than in urothelium. Exogenous PTHrP peptide (1-34) increased intracellular cAMP level in cultured bladder smooth muscle cells. In organ bath study using bladder strips, the PTHrP peptide caused a marked reduction in the amplitude of spontaneous contraction but caused only modest suppression for carbachol-induced contraction. In in vivo functional study by cystometrogram, the PTHrP peptide decreased voiding pressure and increased bladder compliance. Thus, PTHrP is a potent endogenous relaxant of bladder contraction, and autocrine or paracrine mechanism of the PTHrP-PTH1R axis is a physiologically relevant pathway functioning in the bladder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call