Abstract
Plasma polymerization of ethylene diamine (EDA) on PTFE film surfaces is applied to modify PTFE surfaces to become hydrophilic and to incorporate amino groups onto PTFE surfaces. The surface-modified PTFE films are utilized as substrates for interfacial polymerization of EDA and trimesoyl chloride to prepare PTFE/polyamide thin-film composite (TFC) membranes. The effect of plasma power for plasma polymerization on the morphology and performances of the PTFE/PA TFC membranes are examined and discussed. The presence of amino groups on the PTFE substrates provides chemical linkages between PTFE and PA layers in interfacial polymerization to make the PTFE/PA TFC membranes are stable for pervaporation separations. A high permeation flux of 1910 g/h m 2 and a separation factor of 290 are observed with the PTFE/PA TFC membranes for pervaporation dehydration on a 70 wt% isopropanol aqueous solution at 70 °C. This approach explores a new method to prepare PTFE-based TFC membranes via interfacial polymerizations. The prepared TFC membranes could be potentially utilized in pervaporation and nanofiltration separations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.