Abstract

Binder plays a crucial role in constructing high-performance electrodes for water electrolysis. While most research has been focused on advancing electrocatalysts, the application of binders in electrode design has yet to be fully explored. Herein, the in situ incorporation of polytetrafluoroethylene (PTFE) as a multifunctional binder, which increases electrochemical active sites, enhances mass transfer, and strengthens the mechanical and chemical robustness of oxygen evolution reaction (OER) electrodes, is reported. The NiFe-LDH@PTFE/NF electrode prepared by co-deposition of PTFE with NiFe-layered double hydroxide onto nickel foam demonstrates exceptional long-term stability with a minimal potential decay rate of 0.034mV h-1 at 500mA cm-2 for 1000 h. The alkaline water electrolyzer utilizing NiFe-LDH@PTFE/NF requires only 1.584V at 500mA cm-2 and sustains high energy efficiency over 1000 h under industrial operating conditions. This work opens a new path for stabilizing active sites to obtain durable electrodes for OER as well as other electrocatalytic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.