Abstract

ABSTRACT Leishmaniasis is a public health concern, especially in Brazil and India. The drugs available for therapy are old, cause toxicity and have reports of resistance. Therefore, this paper aimed to carry out initial structure-activity relationships (applying molecular docking and dynamic simulations) of arylindole scaffolds against the pteridine reductase (PTR1), which is essential target for the survival of the parasite. Thus, we used a series of 43 arylindole derivatives as a privileged skeleton, which have been evaluated previously for different biological actions. Compound 7 stood out among its analogues presenting the best results of average number of interactions with binding site (2.00) and catalytic triad (1.00). Additionally, the same compound presented the best binding free energy (−32.33 kcal/mol) in dynamic simulations. Furthermore, with computational studies, it was possible to comprehend and discuss the influences of the substituent sizes, positions of substitutions in the aromatic ring and electronic influences. Therefore, this study can be a starting point for the structural improvements needed to obtain a good leishmanicidal drug.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.