Abstract
Both phosphatase and tensin homologue deleted on chromosome ten (PTEN) and cluster of differentiation 38 (CD38) have been suggested to be key regulators of the pathogenesis of asthma. However, the precise role and molecular mechanisms by which PTEN and CD38 are involved in airway remodeling throughout asthma pathogenesis remains poorly understood. This study aimed to elucidate the role of PTEN and CD38 in airway remodeling of asthma. Exposure to tumor necrosis factor-α (TNF-α) in airway smooth muscle (ASM) cells markedly decreased PTEN expression, and increased expression of CD38. Overexpression of PTEN suppressed the expression of CD38 and downregulated proliferation and migration induced by TNF-α stimulation, which was partially reversed by CD38 overexpression. PTEN/CD38 axis regulated Ca2+ levels and cyclic AMP response-element binding protein (CREB) phosphorylation in TNF-α-stimulated ASM cells. The in vitro knockdown of CD38 or overexpression of PTEN remarkably restricted airway remodeling and decreased Ca2+ concentrations and CREB phosphorylation in asthmatic mice. CD38 overexpression abolished the inhibitory effects of PTEN overexpression on airway remodeling. These findings demonstrate that PTEN inhibits airway remodeling of asthma through the downregulation of CD38-mediated Ca2+/CREB signaling, highlighting a key role of PTEN/CD38/Ca2+/CREB signaling in the molecular pathogenesis of asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.