Abstract

Dairy cows with fatty liver or ketosis display decreased insulin sensitivity and defects in the insulin receptor substrate (IRS)/PI3K/AKT signaling pathway. Phosphatase and tensin homolog (PTEN) is a well-known tumor suppressor and also a negative regulator of insulin signaling and peripheral insulin sensitivity. We investigated the hypothesis that PTEN may affect the insulin pathway-mediated hepatic glucose and lipid metabolism in dairy cows. Adenovirus vectors that over-express and silence PTEN were constructed, and then transfected into hepatocytes isolated from calves to investigate the effect of PTEN on PI3K/AKT signaling pathway. PTEN silencing increased the phosphorylation of AKT and the expression of PI3K but decreased the phosphorylation of IRS1, which increased the phosphorylation levels of glycogen synthase kinase-3β (GSK-3β) and expression of sterol regulatory element-binding protein-1c (SREBP-1c). Increased GSK-3β phosphorylation further up-regulated expression of the key enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6-Pase) involved in gluconeogenesis. Furthermore, the expression of SREBP-1c target gene fatty acid synthase (FAS) also increased significantly. We further showed that PTEN over-expression could reverse the above results. PTEN negatively regulates the enzymes involved in hepatic gluconeogenesis and lipid synthesis, which suggests that PTEN may be a therapeutic target for ketosis and fatty liver in dairy cows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.