Abstract

Conventional systematic prostate biopsies (SBx) have multiple limitations, and magnetic resonance imaging (MRI)-ultrasound fusion targeting is increasingly applied (fusion biopsies [FBx]). In our previous studies, we have shown that loss of the tumor suppressor gene phosphatase and tensin homolog (PTEN) in radical prostatectomy (RP) specimens predicts poor disease-specific survival, andin active surveillance (AS), PTEN loss in SBx predicts an adverse AS outcome, although SBx PTEN status does not correlate well with the corresponding RP status. Here, we have hypothesized that PTEN and erythroblast transformation-specific related gene (ERG) status in FBx correlate better with RP than they would in SBx. A total of 106 men, who had undergone FBx and subsequent RP in a single center between June 2015 and May 2017 were included. Fifty-three of the men had concomitant or previous SBx's. All biopsy and RP specimens were collected, and tissue microarrays (TMA) were constructed from RP specimens. Immunohistochemical stainings for PTEN and ERG expression were conducted on biopsies and RP TMAs and results were compared by using Fisher's exact test. The immunohistochemical predictive power of FBx, determined by the concordance of biopsy PTEN and ERG status with RP, is superior to SBx (77.6% vs 66.7% in PTEN, 92.4% vs 66.6% in ERG). FBx was superior to SBx in correlation with RP Gleason Grade Groups and MRI prostate imaging reporting and data system scores. FBx grading correlates with RP histology and MRI findings and predicts the biomarker status in the RP specimens more accurately than SBx. A longer follow-up is needed to evaluate if this translates to better prediction of disease outcomes, especially in AS and radiation therapy where prostatectomy specimens are not available for prognostication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call