Abstract

Detecting the types and concentrations of dissolved gases in insulating oil by resistivity-type sensors is an extremely effective means for diagnosing faults in an oil-immersed transformer. However, further breakthroughs and innovations are needed in gas-sensitive materials for preparing high-performance resistivity-type sensors. In this investigation, the application possibility of using Pt-doped HfS2 (Pt-HfS2) as gas-sensitive materials for the detection of dissolved H2, CO2, CH4, and C2H2 in oil has been verified by analyzing the adsorption energy (Ead), differential charge density (DCD), density of states (DOS), frontier molecular orbital, and desorption time based on density functional theory (DFT). The outcomes suggest that the band gap of HfS2 is obviously narrowed after doping Pt at the position of the bridge between the S and Hf atoms, resulting in a significant increase in the conductivity of HfS2. The low adsorption energy implies that there is only weak physical adsorption between Pt-HfS2 and CO2 (-0.783 eV). In contrast, the highly hybridized atomic orbitals of Pt with H2, CH4, and C2H2 indicate that strong chemical adsorption reactions occur. Two-dimensional Pt-HfS2 as a gas sensor has a great monitoring performance for CH4 at 298 K (room temperature). This research serves as theoretical guidelines for probing the application potential of Pt-HfS2 in fault diagnosis and predictive maintenance of an oil-immersed transformer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call