Abstract

ABSTRACT Biogenesis of autophagosomes is the early step of macroautophagy/autophagy and requires membrane acquisition mainly from ER-Golgi-sourced precursor vesicles. Matured autophagosomes fuse with lysosomes for final degradation. However, how this selective fusion is determined remains elusive. Here, we identified Sac1 by a high throughput screen in Saccharomyces cerevisiae to show it was critical for autophagosome-lysosome fusion through its PtdIns4P phosphatase activity. Sac1 deficiency caused a dramatic increase of PtdIns4P at early Golgi apparatus and abnormal incorporation of PtdIns4P into Atg9 vesicles and autophagosomes, which caused failure to recruit SNARE proteins for autophagosome fusion with vacuoles. Sac1 function in autophagy was highly conserved from yeast to mammalian cells. Our work thus suggested that correct upstream lipid incorporation was important for downstream fusion step of autophagy and that Sac1 played a critical and ancient role in this surveillance of lipid integration. Abbreviations: Ape1: aminopeptidase Ι; ATG: autophagy related; EBSS: Earle’s balanced salt solution; ER: endoplasmic reticulum; ERGIC: Golgi apparatus and ER-Golgi intermediate compartment; HOPS: homotypic fusion and protein sorting complex; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4K: phosphoinositide-4-kinase; PtdIns4P: phosphatidylinositol-4-phosphate; SD-N: nitrogen starvation medium; SNARE: soluble N-ethylamide-sensitive factor attachment protein receptor

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.