Abstract

Lithium (Li(+)) is the mood stabilizer most frequently used in the treatment of bipolar mood disorder; however, its therapeutic mechanism is unknown. In the 1980s, Berridge and colleagues proposed that Li(+) treatment acts via inhibition of IMPase (inositol monophosphatase) to deplete the cellular concentration of myo-inositol. Inositol depletion is also seen with the alternative mood stabilizers VPA (valproic acid) and CBZ (carbamazepine), suggesting a common therapeutic action. All three drugs cause changes in neuronal cell morphology and cell chemotaxis; however, it is unclear how reduced cellular inositol modulates these changes in cell behaviour. It is often assumed that reduced inositol suppresses Ins(1,4,5)P(3), a major intracellular signal molecule, but there are other important phosphoinostide-based signal molecules in the cell. In the present paper, we discuss evidence that Li(+) has a substantial effect on PtdIns(3,4,5)P(3), an important signal molecule within the nervous system. As seen for Ins(1,4,5)P(3) signalling, suppression of PtdIns(3,4,5)P(3) signalling also occurs via an inositol-depletion mechanism. This has implications for the cellular mechanisms controlling phosphoinositide signalling, and offers insight into the genetics underlying risk of bipolar mood disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.