Abstract

In this study, we demonstrate that Pt-Cu bimetallic nanoparticles with different compositions (Pt3Cu, PtCu, PtCu3) can be loaded in the lumen of halloysite nanotube (HNT) via a simple one-pot reduction. Increasing the pH of metallic precursor (H2PtCl6 and CuCl2)/HNT solutions enhances the dissociation of H2PtCl6, advancing the association of [PtCl6]2- with the positively charged inner surface (Al-OH) of HNT. Moreover, the shrinkage of bond length from Pt-Cl in [PtCl6]2- to Pt-O in [PtCl4(OH)2]2- due to pH-modulated ligand exchange may also assist Pt(IV) being trapped inside the halloysite. In the meantime, Cu(II) cations may complex with Pt(IV) anions via electrostatic force that would help the formation of Pt-Cu bimetallic nanoparticles inside the halloysite. The obtained PtCu3@HNT system shows a significantly enhanced catalytic performance in the reduction of 4-nitrophenol by sodium borohydride, with a mass activity approximating 60 times higher than that of unloaded Pt nanoparticles. The high catalytic efficiency can be maintained after thermal treatment at 200 or 400 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.